2.

4.

(a)	(i)	flux = $B \times A$ (normal to B) with symbols explained	B1
	(ii)	linkage = N × flux A = x^2 so linkage = NB x^2	B1 B1
(b)	(i)	Statement of Faraday's law or indication e.g. $V = d(NBx^2) / dt$ from (a)(ii) $V = NB x^2 dx/dt$ or $V = NBxv / argue$ area swept out per second as xv $V = 1250 \times 0.032 \times 0.02 \times 0.1$ = 0.08 or 80 mV	B1 B1 B1 A0
	(ii)	equal positive and negative regions	B 1

(11)	equal positive and negative regions	BI
	equal positive and negative values of 'maxima' labelled on y-axis	B1
	value changes within correct time zones, $t = 0.2$ to 0.4, 0.6 to 0.8 s	B1
	'square pulse' shape	B1
	sinusoidal graphs score zero marks	

3.	magnetic flux = BA	1	
	meanings of B and A, i.e. flux density or field strength and area \perp to it	1	
	magnetic flux linkage refers to the flux linking/passing through a coil;	1	
	and equals $N \times flux$ where N is the number of turns (of the coil)	1	
	Faraday's law: induced e.m.f./voltage is proportional to rate of change of flux		
	linkage through it /correct mathematical formulation/AW	1	
	Lenz's law: the direction of the induced e.m.f./voltage is such as to		
	oppose the motion/change that produced it	1	
	relationship of Lenz's law to conservation of energy or other valid		
	explanation/discussion/description	2	
	max 5 marks		
	avality of whitten communication	2	
	quality of written communication	2	[7]
			[/]

4.	(a)	B = F/II with symbols explained or appropriate statement in words; (1) explicit reference to I and B at right angles/define from $F = BQv$ etc (1)		
	(b)	(i)	arrow towards centre of circle	1
		(ii)	field out of paper; Fleming's L.H. rule/moving protons act as conventional current	2

1

[1]

[10]

B1

(iii) F = Bev allow BQv

(iv)
$$F = mv^2/r$$
; Bev = mv^2/r ; (2)
B = $mv/er = 1.67 \times 10^{-27} \times 1.5 \times 10^7/(1.6 \times 10^{-19} \times 60)$; = 0.0026; T (3) 5
allow Wb m^{-2}

(v) the field must be doubled; (1) $B \propto v$ (as m, e and r are fixed)/an increased force is required to maintain the same radius (1)

5. (a) appropriate shape; lines perpendicular to and touching plate and sphere; (2) arrows towards negative sphere (1)

(b) (i) By moments, e.g F cos 20 = W sin 20 / by triangle of forces /
by resolution of forces / other suitable method; *i.e. justification needed* (1)
$$F = 1.0 \times 10^{-5} \tan 20$$
; = $1.0 \times 10^{-5} \times 0.364$; (= 3.64×10^{-6} N) (2)
triangle of forces gives W/F = tan 70, etc (1) 3

(ii)
$$E = F/Q; = 3.64 \times 10^{-6} / 1.2 \times 10^{-9} = 3.0 \times 10^{3}; N C^{-1} / V m^{-1}$$

(c)
$$E = (1/4\pi\epsilon_0)Q/r^2$$
; $3.0 \times 10^3 = 9 \times 10^9 \times 1.2 \times 10^{-9}/r^2$; (2)
or use $F = (1/4\pi\epsilon_0)Q^2/r^2$; $r^2 = 3.6 \times 10^{-3}$ giving $r = 6 \times 10^{-2}$ (m) (1)

(d) field line sketch *minimum of 5 lines symmetrical about line joining centres with arrows*; (1)
 Fig 1 sketch matches RHS of Fig 2/plate analogous to mirror/AW relating to symmetry (1)
 2

6. (i)
$$I = V/R = 12/50 (1)$$

= 0.24 A (1)

(ii) Power in primary = power in secondary /
$$I_p V_p = I_s V_s$$
 (1)
 $I_p = 0.24 \times 12 / 230 = 0.0125 \text{ A}$ (1) 2
[4]

1

2

3

3

3

2

[14]

7.	(a)	(i)	F is towards 'open' end of tube; using Fleming's L.H. rule	2	
		(ii)	$\mathbf{F} = \mathbf{B}\mathbf{I}\mathbf{w}$	1	
		(iii)	$F = 0.15 \times 800 \times 0.0025; = 3.0$ (N)	2	
	(b)	(i)	A voltage is induced across moving metal as it cuts lines of flux/AW; (1) voltage is proportional to flux change per second/AW; (1) the flux change per second is Bwv / is proportional to the area of metal moving through the field per second / is proportional to v (1) or Faraday's law fully stated; with reasonable attempt to; (2) relate flux linkage per second proportionally to speed (1)	3	
		(ii)	flux (linkage) doubles; so using Faraday's law V doubles/AW	2	[10]