1. Force per unit positive charge B12. (a) (i) flux $=\mathrm{B} \times \mathrm{A}$ (normal to B) with symbols explainedB1
(ii) linkage $=\mathrm{N} \times$ flux B1
$\mathrm{A}=x^{2}$ so linkage $=\mathrm{NB} x^{2}$ B1
(b) (i) Statement of Faraday's law or indication
e.g. $\mathrm{V}=\mathrm{d}\left(\mathrm{NB} x^{2}\right) / d t$ from (a)(ii)
$\mathrm{V}=\mathrm{NB} x^{2} \mathrm{~d} x / \mathrm{dt}$ or $\mathrm{V}=\mathrm{NB} x \mathrm{v} /$ argue area swept out per second as $x \mathrm{v}$ B1
$\mathrm{V}=1250 \times 0.032 \times 0.02 \times 0.1$ B1
$=0.08$ or 80 mV B1
(ii) equal positive and negative regions B1
equal positive and negative values of 'maxima' labelled on y-axis B1
value changes within correct time zones, $\mathrm{t}=0.2$ to $0.4,0.6$ to 0.8 s B1
'square pulse' shape B1
sinusoidal graphs score zero marks
2. magnetic flux $=\mathrm{BA}$ 1
meanings of B and A , i.e. flux density or field strength and area \perp to it 1
magnetic flux linkage refers to the flux linking/passing through a coil; 1
and equals $\mathrm{N} \times$ flux where N is the number of turns (of the coil) 1
Faraday's law: induced e.m.f./voltage is proportional to rate of change of flux linkage through it /correct mathematical formulation/AW 1
Lenz's law: the direction of the induced e.m.f./voltage is such as to oppose the motion/change that produced it 1
relationship of Lenz's law to conservation of energy or other valid explanation/discussion/description 2
max 5 marks
quality of written communication 2
3. (a) $\mathrm{B}=\mathrm{F} / \mathrm{Il}$ with symbols explained or appropriate statement in words; (1) explicit reference to I and B at right angles/define from $F=B Q v$ etc (1)
(b) (i) arrow towards centre of circle 1
(ii) field out of paper; Fleming's L.H. rule/moving protons act as conventional current
(iii) $\mathrm{F}=\mathrm{Bev}$ allow $B Q v$
(iv) $\mathrm{F}=\mathrm{mv}^{2} / \mathrm{r} ; \mathrm{Bev}=\mathrm{mv}^{2} / \mathrm{r} ;$ (2)

$$
\mathrm{B}=\mathrm{mv} / \mathrm{er}=1.67 \times 10^{-27} \times 1.5 \times 10^{7} /\left(1.6 \times 10^{-19} \times 60\right) ;=0.0026 ; \mathrm{T}(3)
$$

$$
\text { allow } \mathrm{Wb} \mathrm{~m}^{-2}
$$

(v) the field must be doubled; (1)
$B \infty \mathrm{v}$ (as m, e and r are fixed)/an increased force is required to maintain the same radius (1)
5. (a) appropriate shape; lines perpendicular to and touching plate and sphere; (2) arrows towards negative sphere (1)
(b) (i) By moments, e.g $\mathrm{F} \cos 20=\mathrm{W} \sin 20 /$ by triangle of forces / by resolution of forces / other suitable method; i.e. justification needed (1) $\mathrm{F}=1.0 \times 10^{-5} \tan 20 ;=1.0 \times 10^{-5 \times} 0.364 ;\left(=3.64 \times 10^{-6} \mathrm{~N}\right)(2)$ triangle of forces gives $\mathrm{W} / \mathrm{F}=\tan 70$, etc (1)
(ii) $\mathrm{E}=\mathrm{F} / \mathrm{Q} ;=3.64 \times 10^{-6} / 1.2 \times 10^{-9}=3.0 \times 10^{3} ; \mathrm{N} \mathrm{C}^{-1} / \mathrm{V} \mathrm{m}^{-1}$
(c) $\mathrm{E}=\left(1 / 4 \pi \varepsilon_{0}\right) \mathrm{Q} / \mathrm{r}^{2} ; 3.0 \times 10^{3}=9 \times 10^{9} \times 1.2 \times 10^{-9} / \mathrm{r}^{2}$; (2) or use $\mathrm{F}=\left(1 / 4 \pi \varepsilon_{0}\right) \mathrm{Q}^{2} / \mathrm{r}^{2} ; \mathrm{r}^{2}=3.6 \times 10^{-3}$ giving $\mathrm{r}=6 \times 10^{-2}(\mathrm{~m})(1)$
(d) field line sketch minimum of 5 lines symmetrical about line joining centres with arrows; (1)
Fig 1 sketch matches RHS of Fig 2/plate analogous to mirror/AW relating to symmetry (1)
6. (i) $I=V / \mathrm{R}=12 / 50$ (1)
$=0.24 \mathrm{~A}$ (1)
(ii) Power in primary $=$ power in secondary $/ I_{p} V_{p}=I_{s} V_{s}(1)$
$\mathrm{I}_{\mathrm{p}}=0.24 \times 12 / 230=0.0125 \mathrm{~A}(1)$
7. (a) (i) F is towards 'open' end of tube; using Fleming's L.H. rule 2
(ii) $\mathrm{F}=\mathrm{BIw} \quad 1$
(iii) $\mathrm{F}=0.15 \times 800 \times 0.0025 ;=3.0(\mathrm{~N}) \quad 2$
(b) (i) A voltage is induced across moving metal as it cuts lines of flux/AW; (1) voltage is proportional to flux change per second/AW; (1) the flux change per second is Bwv / is proportional to the area of metal moving through the field per second / is proportional to v (1) or Faraday's law fully stated; with reasonable attempt to; (2) relate flux linkage per second proportionally to speed (1)
(ii) flux (linkage) doubles; so using Faraday's law V doubles/AW 2

